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Coordination models of random sequential adsorption in one and two dimensions
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Coordination models of random sequential adsorption are studied numerically in one and two dimen-
sions. In one dimension k-mers are deposited and in two dimensions squares of side m. The jamming
coverage is examined as a function of coordination number and of k and m in one and two dimensions,

respectively.

PACS number(s): 05.50.+q, 02.50.—r, 05.70.Ln

INTRODUCTION

Random sequential adsorption (RSA) is the irreversible
process by which particles are deposited on a discrete or
continuous surface. At each time step a random position
is chosen and a particle is deposited in that position if it
does not overlap with any of the particles which have
been placed previously. This means that not all positions
are available for deposition and that after a certain
amount of time the surface becomes full, with no further
deposition possible.

A number of numerical studies have been performed
on RSA models in two dimensions. On the lattice the
coverage has been examined for different shapes [1,2] and
for squares of different sizes [3,4]. In the continuum
there are more possibilities; needlelike objects have been
considered [5] as well as finite-sized shapes [6,7]. In one
dimension most problems have been solved analytically
[8—12]. The placing of an object on a line divides the line
into two independent systems which can be treated sepa-
rately. It is this property, which obviously does not exist
for two-dimensional lattices, which has made analytic
progress possible. Other theoretical approaches have at-
tempted to bridge the gap between one- and two-
dimensional problems by introducing a set of hierarchial
rate-filling equations [13,14] or by examining the problem
on a Bethe lattice [15].

Recently a generalization of the RSA process has been
introduced for lattice deposition — that of coordination
models [16]. In this process deposition may only take
place if all the particles, including the placed particle,
have less than ¢ touching neighbors. Of course the de-
posited particle must not overlap any previously placed
particle, as in the original RSA models. The coordina-
tion number can take any value from O to 2 in one dimen-
sion and from O to 6 in two dimensions. The upper limit
on ¢ is determined by the largest possible number of
neighbors for an object on a lattice. In two dimensions,
when ¢=0 the objects are not allowed to touch one
another; when ¢ =6 a placed object can touch any num-
ber of neighbors and the process is just that of RSA.
Similarly, in one dimension, the ¢ =0 model allows no
contact between k-mers, ¢ =1 allows a k-mer to touch
one of its neighbors, and ¢ =2 is just the basic RSA mod-
el.
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Coordination models have been studied in one, two,
and three dimensions for objects of size 1 [16]. No nu-
merical work has considered the dependence of these
models on the size of the deposited particle and no pro-
gress has been made analytically on the one-dimensional
models. The property of a deposited object dividing the
lattice into two independent parts does not hold for these
models, so an analytical approach similar to that taken
for the RSA models is not possible.

In this paper the coverage in the jamming limit is
determined in two dimensions as a function of both coor-
dination number and of the length of the sides of the de-
posited squares, m. A nontrivial dependence is found:
when ¢ =4, 5, and 6 the coverage falls with increasing m;
for lower values of ¢ the coverage increases with m. In
one dimension a similar property is observed: for ¢ =0
the coverage rises with the k-mer length k; for ¢ =1 and
2 it decreases.

NUMERICAL RESULTS AND DISCUSSION

The coverage in the jamming limit for a one-
dimensional lattice 8(k) is given as a function of k in
Table I. The results were obtained from a periodic lattice

TABLE 1. The coverage of k-mers on a one-dimensional lat-
tice in the jamming limit as a function of k and coordination
number c.

o(k)

k c=0 c=1 c=2
2 0.5492 0.6781 0.8645

3 0.6028 0.7042 0.8237

4 0.6337 0.7165 0.8039
5 0.6538 0.7236 0.7924

6 0.6679 0.7282 0.7847

7 0.6782 0.7313 0.7791

8 0.6865 0.7333 0.7751
9 0.6928 0.7352 0.7720
10 0.6978 0.7365 0.7694
20 0.7224 0.7421 0.7584
30 0.7305 0.7441 0.7544
40 0.7350 0.7447 0.7528
50 0.7368 0.7475 0.7518
100 0.7414 0.7476 0.7498
1000 0.7470 0.7476 0.7478
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FIG. 1. Jamming coverage vs coordination number (two di-
mensions).

of 100000 sites, averaging over 100 realizations with 100
attempted placements per site. The results are exact to
three decimal places and the values for ¢ =2 agree with
those published previously [17].

The numerical results for two dimensions were ob-
tained from simulations performed on a 200 X200 period-
ic lattice and averaged over 400 runs for m =2,3,4,5,
and 6. The values at ¢ =6 are broadly in agreement with
those of Model A in [3].

For two dimensions the jamming coverage is given as a
function of coordination number in Fig. 1. The values
from the table have been plotted and joined with straight
lines. For an average coordination of about 2.4, the cov-
erage is =0.58, independent of the size of the deposited
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FIG. 2. Jamming coverage vs 1/m (two dimensions).
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FIG. 3. In|6(k)—6( )| vs In k (one dimension).

squares. This is the point where the curves intersect. As
m gets larger the curves become more horizontal so that
as m — oo the line becomes horizontal with a coverage,
independent of coordination number, of about 0.58. Fig-
ure 2 is a plot of coverage vs 1/m. As m goes to infinity
the curves appear to straighten, although statistical un-
certainty and the relatively small values of m means that
no definite conclusion can be reached about the large-m
behavior. The coverage at m =, which will be the
same for all values of ¢, appears to be about 0.54. This is
a little lower than the value suggested by Fig. 1. The cov-
erage in this limit has been discussed by other authors;
values range from 0.554 [18] to 0.564 [3].

In Fig. 3 a plot of In|6(k)—6( )| vs Ink is given. As
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FIG. 4. Jamming coverage vs 1/k (one dimension).
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can be seen, all three curves have about the same slope:
—0.95, —0.97, and —1.00 for ¢ =0, 1, and 2, respective-
ly. The plot was made by taking the value of 6( ) as
0.7476.

In Fig. 4 a graph of 6(k) vs 1/k is given. The curves
for ¢ =0, 1, and 2 all approach a straight line as k — co.
The coverage in the limit k—c tends to 0.7476, in
agreement with that given for the random sequential ad-
sorption of k-mers onto a one-dimensional lattice [17].

CONCLUSIONS

The deposition of k-mers and squares has been studied
for coordination models in one and two dimensions as a
function of the size of the deposited object. As k is in-

creased in one dimension, the coverage approached the
k = oo limit like 1/k for all values of c. The coverage in
this limit is about 0.7476, in agreement with previously
published results.

In two dimensions the m = o« coverage is ~0.56, in-
dependent of coordination number. This is also the value
of the coverage for deposition processes with an average
coordination of c¢=2.4, irrespective of the size of the
squares being deposited. As m gets larger the depen-
dence of the coverage in the jamming limit on the coordi-
nation number becomes weaker and weaker.

In both one and two dimensions the coverage as a
function of shape size approaches the coverage for an
infinite shape from below for low values of ¢ and from
above for high values.
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